For one mass_dataset class object, we can get the summary information of it.

Data preparation

library(microbiomedataset)
expression_data <-
  as.data.frame(matrix(
    sample(1:100, 100, replace = TRUE),
    nrow = 10,
    ncol = 10
  ))

rownames(expression_data) <- paste0("OTU", 1:nrow(expression_data))
colnames(expression_data) <-
  paste0("Sample", 1:ncol(expression_data))
expression_data
#>       Sample1 Sample2 Sample3 Sample4 Sample5 Sample6 Sample7 Sample8 Sample9
#> OTU1        8      19      98      44      40      72      85      95      69
#> OTU2       41      81      65      25      22      72      72      24      62
#> OTU3       48      42      68      39      35      30      24      89      42
#> OTU4       22      87      29      30      12      78      13      27      65
#> OTU5       50      45      32      41      80      46      49      63       1
#> OTU6       39      31      87      24      75      53      27      14       6
#> OTU7       43      67      31      10      32      69      57      47      25
#> OTU8       99      26      41      81      41      50       7      14      98
#> OTU9       47      78      42      13      33      85       9       9      81
#> OTU10      43      64      66      11      20      65      48      56      82
#>       Sample10
#> OTU1        60
#> OTU2         5
#> OTU3        53
#> OTU4         1
#> OTU5        42
#> OTU6        93
#> OTU7        11
#> OTU8        91
#> OTU9       100
#> OTU10      100

variable_info <-
  as.data.frame(matrix(
    sample(letters, 70, replace = TRUE),
    nrow = nrow(expression_data),
    ncol = 7
  ))

rownames(variable_info) <- rownames(expression_data)
colnames(variable_info) <-
  c("Domain",
    "Phylum",
    "Class",
    "Order",
    "Family",
    "Genus",
    "Species")

variable_info$variable_id <-
  rownames(expression_data)

sample_info <-
  data.frame(sample_id = colnames(expression_data),
             class = "Subject")

object <-
  create_microbiome_dataset(
    expression_data = expression_data,
    sample_info = sample_info,
    variable_info = variable_info
  )

object
#> -------------------- 
#> microbiomedataset version: 0.99.1 
#> -------------------- 
#> 1.expression_data:[ 10 x 10 data.frame]
#> 2.sample_info:[ 10 x 2 data.frame]
#> 3.variable_info:[ 10 x 8 data.frame]
#> 4.sample_info_note:[ 2 x 2 data.frame]
#> 5.variable_info_note:[ 8 x 2 data.frame]
#> -------------------- 
#> Processing information (extract_process_info())
#> create_microbiome_dataset ---------- 
#>             Package               Function.used                Time
#> 1 microbiomedataset create_microbiome_dataset() 2022-07-09 21:49:52

Session information

sessionInfo()
#> R version 4.2.1 (2022-06-23)
#> Platform: x86_64-apple-darwin17.0 (64-bit)
#> Running under: macOS Big Sur ... 10.16
#> 
#> Matrix products: default
#> BLAS:   /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
#> LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib
#> 
#> locale:
#> [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] dplyr_1.0.9              microbiomedataset_0.99.2
#> 
#> loaded via a namespace (and not attached):
#>   [1] readxl_1.4.0                circlize_0.4.15            
#>   [3] systemfonts_1.0.4           igraph_1.3.2               
#>   [5] plyr_1.8.7                  lazyeval_0.2.2             
#>   [7] splines_4.2.1               BiocParallel_1.30.3        
#>   [9] GenomeInfoDb_1.32.2         ggplot2_3.3.6              
#>  [11] Rdisop_1.56.0               digest_0.6.29              
#>  [13] foreach_1.5.2               yulab.utils_0.0.5          
#>  [15] htmltools_0.5.2             massdataset_1.0.5          
#>  [17] fansi_1.0.3                 magrittr_2.0.3             
#>  [19] memoise_2.0.1               cluster_2.1.3              
#>  [21] doParallel_1.0.17           tzdb_0.3.0                 
#>  [23] openxlsx_4.2.5              limma_3.52.2               
#>  [25] ComplexHeatmap_2.12.0       Biostrings_2.64.0          
#>  [27] readr_2.1.2                 matrixStats_0.62.0         
#>  [29] pkgdown_2.0.5               colorspace_2.0-3           
#>  [31] textshaping_0.3.6           xfun_0.31                  
#>  [33] crayon_1.5.1                RCurl_1.98-1.7             
#>  [35] jsonlite_1.8.0              impute_1.70.0              
#>  [37] survival_3.3-1              iterators_1.0.14           
#>  [39] ape_5.6-2                   glue_1.6.2                 
#>  [41] gtable_0.3.0                zlibbioc_1.42.0            
#>  [43] XVector_0.36.0              GetoptLong_1.0.5           
#>  [45] DelayedArray_0.22.0         phyloseq_1.40.0            
#>  [47] Rhdf5lib_1.18.2             shape_1.4.6                
#>  [49] BiocGenerics_0.42.0         scales_1.2.0               
#>  [51] vsn_3.64.0                  DBI_1.1.3                  
#>  [53] Rcpp_1.0.8.3                mzR_2.30.0                 
#>  [55] viridisLite_0.4.0           clue_0.3-61                
#>  [57] tidytree_0.3.9              gridGraphics_0.5-1         
#>  [59] preprocessCore_1.58.0       stats4_4.2.1               
#>  [61] MsCoreUtils_1.8.0           htmlwidgets_1.5.4          
#>  [63] httr_1.4.3                  RColorBrewer_1.1-3         
#>  [65] ellipsis_0.3.2              pkgconfig_2.0.3            
#>  [67] XML_3.99-0.10               sass_0.4.1                 
#>  [69] utf8_1.2.2                  ggplotify_0.1.0            
#>  [71] tidyselect_1.1.2            rlang_1.0.3                
#>  [73] reshape2_1.4.4              munsell_0.5.0              
#>  [75] cellranger_1.1.0            tools_4.2.1                
#>  [77] cachem_1.0.6                cli_3.3.0                  
#>  [79] generics_0.1.3              ade4_1.7-19                
#>  [81] evaluate_0.15               biomformat_1.24.0          
#>  [83] stringr_1.4.0               fastmap_1.1.0              
#>  [85] mzID_1.34.0                 yaml_2.3.5                 
#>  [87] ragg_1.2.2                  knitr_1.39                 
#>  [89] fs_1.5.2                    zip_2.2.0                  
#>  [91] purrr_0.3.4                 ncdf4_1.19                 
#>  [93] pbapply_1.5-0               nlme_3.1-158               
#>  [95] compiler_4.2.1              rstudioapi_0.13            
#>  [97] plotly_4.10.0               png_0.1-7                  
#>  [99] affyio_1.66.0               tibble_3.1.7               
#> [101] bslib_0.3.1                 stringi_1.7.6              
#> [103] desc_1.4.1                  MSnbase_2.22.0             
#> [105] lattice_0.20-45             ProtGenerics_1.28.0        
#> [107] Matrix_1.4-1                permute_0.9-7              
#> [109] vegan_2.6-2                 multtest_2.52.0            
#> [111] ggsci_2.9                   vctrs_0.4.1                
#> [113] rhdf5filters_1.8.0          pillar_1.7.0               
#> [115] lifecycle_1.0.1             BiocManager_1.30.18        
#> [117] jquerylib_0.1.4             MALDIquant_1.21            
#> [119] GlobalOptions_0.1.2         data.table_1.14.2          
#> [121] bitops_1.0-7                GenomicRanges_1.48.0       
#> [123] R6_2.5.1                    pcaMethods_1.88.0          
#> [125] affy_1.74.0                 IRanges_2.30.0             
#> [127] codetools_0.2-18            MASS_7.3-57                
#> [129] assertthat_0.2.1            rhdf5_2.40.0               
#> [131] SummarizedExperiment_1.26.1 rprojroot_2.0.3            
#> [133] rjson_0.2.21                S4Vectors_0.34.0           
#> [135] GenomeInfoDbData_1.2.8      mgcv_1.8-40                
#> [137] parallel_4.2.1              hms_1.1.1                  
#> [139] grid_4.2.1                  tidyr_1.2.0                
#> [141] rmarkdown_2.14              MatrixGenerics_1.8.1       
#> [143] masstools_0.99.13           Biobase_2.56.0