merge samples
summarise_variables(
object,
what = c("sum_intensity", "mean_intensity", "median_intensity"),
variable_id,
variable_index,
remain_variable_info_id,
remain_variable_info_index,
group_by,
...
)
summarize_variables(
object,
what = c("sum_intensity", "mean_intensity", "median_intensity"),
variable_id,
variable_index,
remain_variable_info_id,
remain_variable_info_index,
group_by,
...
)
# S3 method for microbiome_dataset
summarise_variables(
object,
what = c("sum_intensity", "mean_intensity", "median_intensity"),
variable_id,
variable_index,
remain_variable_info_id,
remain_variable_info_index,
group_by,
...
)
microbiome_dataset
which you want to use
variables should be merged
variables should be merged
which variable information should be used.
which variable information should be used.
group all variables by column in variable_info
other params
microbiome_dataset
data(global_patterns)
dim(global_patterns)
#> variables samples
#> 19216 26
global_patterns
#> --------------------
#> microbiomedataset version: 0.99.1
#> --------------------
#> 1.expression_data:[ 19216 x 26 data.frame]
#> 2.sample_info:[ 26 x 8 data.frame]
#> 3.variable_info:[ 19216 x 8 data.frame]
#> 4.sample_info_note:[ 8 x 2 data.frame]
#> 5.variable_info_note:[ 8 x 2 data.frame]
#> --------------------
#> Processing information (extract_process_info())
#> create_microbiome_dataset ----------
#> Package Function.used Time
#> 1 microbiomedataset create_microbiome_dataset() 2022-07-10 10:56:13
global_patterns <-
global_patterns %>%
activate_microbiome_dataset(what = "variable_info") %>%
dplyr::filter(!is.na(Genus))
object <-
global_patterns %>%
summarize_variables(what = "sum_intensity", group_by = "Genus")
dim(object)
#> variables samples
#> 983 26